Муниципальное бюджетное общеобразовательное учреждение «Верхнеачакская средняя общеобразовательная школа им А.П.Айдак» Ядринского района Чувашской Республики

Рассмотрена Согласовано Утверждаю на заседании ШМО зам. директора по УВР Директор МБОУ «Верхнеачакская СОШ Протокол №1 С.В. Степанова «30» августа 2022г. им. А.П.Айдак» «30» августа 2022г. Руководитель ШМО Т.А.Яжейкина Приказ №236 от «30» августа Николаева О.И. 2022г.

Рабочая учебная программа по физике для 11 класса на уровне среднего общего образования

Составитель Васильева Надежда Александровна, учитель математики и физики первой категории

Пояснительная записка

Рабочая программа по физике разработана на основе примерной программы среднего (полного) общего образования по физике. 10-11 классы. Базовый уровень. Авторы программы В.А. Орлов, О.Ф. Кабардин, В.А. Коровин, А.Ю. Пентин, Н.С. Пурышева, В.Е. Фрадкин. Программы для общеобразовательных учреждений. Физика. Астрономия. 7-11 кл./сост. В.А. Коровин, В.А. Орлов.- М.: Дрофа, 2012. Программа составлена в соответствии с Федеральным компонентом полного общего образования по физике и предназначена для работы по учебнику физики для 11класса Г.Я. Мякишева, Б.Б. Буховцева, Н.Н. Сотского - базовый и профильный уровни.

Программа включает следующие разделы: цели изучения физики, основное содержание с примерным распределением учебных часов по разделам курса, требования к уровню подготовки учащихся, календарно-тематическое планирование, литература.

Курс рассчитан на 68 часов- в 11 классе

Структура документа

Рабочая программа по физике включает разделы: пояснительную записку; цели изучения физики, основное содержание с примерным распределением учебных часов по разделам курса, требования к уровню подготовки выпускников, календарно-тематическое планирование, литературу.

Цели изучения физики

- Усвоение знаний о фундаментальных физических законах и принципах, лежащих в основе современной физической картины мира; наиболее важных открытиях в области физики, оказавших определяющее влияние на развитие техники и технологии; методах научного познания природы;
- Овладение умениями проводить наблюдения, планировать и выполнять эксперименты, выдвигать гипотезы и строить модели, применять полученные знания по физике для объяснения разнообразных физических явлений и свойств веществ; практического использования физических знаний; оценивать достоверность естественно-научной информации;
- Развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний и умений по физике с использованием различных источников информации и современных информационных технологий;
- Воспитание убежденности в возможности познания законов природы;

Изучение физики на данном этапе физического образования направлено на достижение следующих целей:

- •развитие интересов и способностей учащихся на основе передачи им знаний и опыта познавательной и творческой деятельности;
- •понимание учащимися смысла основных научных понятий и законов физики, взаимосвязи между ними;
- •формирование у учащихся представлений о физической картине мира.

на выработку компетенций:

общеобразовательных:

умения самостоятельно и мотивированно организовывать свою познавательную деятельность (от постановки до получения и оценки результата); умения использовать элементы причинно-следственного и структурно-функционального анализа, определять сущностные характеристики изучаемого объекта, развернуто обосновывать суждения, давать определения, приводить доказательства; умения использовать мультимедийные ресурсы и компьютерные технологии для обработки и презентации результатов познавательной ипрактической деятельности; умения оценивать и корректировать свое поведение в окружающей среде, выполнять экологические требования в практической деятельности и повседневной жизни.

предметно-ориентированных:

понимать возрастающую роль науки, усиление взаимосвязи и взаимного влияния науки и техники, превращения науки в непосредственную производительную силу общества: осознавать взаимодействие человека с окружающей средой, возможности и способы охраны природы; развивать познавательные интересы и интеллектуальные способности в процессе самостоятельного приобретения физических знаний с использований различных источников информации, в том числе компьютерных; воспитывать убежденность в позитивной роли физики в жизни современного общества, понимание перспектив развития энергетики, транспорта, средств связи и др.; овладевать умениями применять полученные знания для получения разнообразных физических явлений; применять полученные знания и умения для безопасного использования веществ и механизмов в быту, сельском хозяйстве и производстве, решения практических задач в повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и окружающей среде.

Достижение этих целей обеспечивается решением следующих задач:

- •знакомство учащихся с методом научного познания и методами исследования объектов и явлений природы;
- •приобретение учащимися знаний о механических, тепловых, электромагнитных и квантовых явлениях, физических величинах, характеризующих эти явления;
- •формирование у учащихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов, широко применяемых в практической жизни;
- •овладение учащимися такими общенаучными понятиями, как природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки;

Личностными результатами обучения физике в основной школе являются:

- •сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;
- •убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
- •самостоятельность в приобретении новых знаний и практических умений;
- •готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
- •мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;
- •формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметными результатами обучения физике в основной школе являются:

- •овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- •понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
- •формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное

содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;

- •приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
- •развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- •освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- •формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Общими предметными результатами обучения физике в основной школе являются:

- •знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;
- •умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
- •умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;
- •умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения
- практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;
- •формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, в высокой ценности науки в развитии материальной и духовной культуры людей;
- •развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы;
- •коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники и

Виды и формы контроля

Оценка метапредметных и предметных результатов

Оценка метапредметных результатов представляет собой оценку достижения планируемых результатов освоения основной образовательной программы, представленных в разделах «Регулятивные универсальные учебные действия», «Познавательные универсальные учебные действия» программы формирования универсальных учебных действий, а также планируемых результатов, представленных во всех разделах междисциплинарных учебных программ. Формирование метапредметных результатов обеспечивается за счёт основных компонентов образовательного процесса — учебных предметов.

Основной процедурой итоговой оценки достижения метапредметных результатов является защита итогового индивидуального проекта.

Индивидуальный итоговый проект, который представляет собой учебный проект, выполняемый обучающимся в рамках одного или нескольких учебных предметов с целью продемонстрировать свои достижения в самостоятельном освоении содержания и методов избранных областей знаний и/или видов деятельности и способность проектировать и

осуществлять целесообразную и результативную деятельность (учебно - познавательную, конструкторскую, социальную, художественно-творческую, иную).

Для каждого обучающегося разрабатываются план, программа подготовки проекта (базовый, повышенный).

Критерии оценки (максимум 3 балла)

- 1. Способность к самостоятельному приобретению знаний и решению проблем
- 2. Сформированность предметных знаний и способов действий
- 3. Сформированность регулятивных действий.
- 4. Сформированность коммуникативных действий

При *интегральном описании* результатов выполнения проекта вывод об уровне сформированности навыков проектной деятельности делается на основе оценки всей совокупности основных элементов проекта (продукта и пояснительной записки, отзыва, презентации) по каждому из четырёх названных выше критериев.

Отметка за выполнение проекта выставляется в графу «Проектная деятельность» или «Экзамен» в классном журнале и личном деле. В документ государственного образца об уровне образования — аттестат об основном общем образовании — отметка выставляется в свободную строку.

Оценка устных ответов обучающихся Оценка 5 ставится в том случае, если учащийся показывает верное

понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий, дает точное определение и истолкование основных понятий и законов, теорий, а также правильное определение физических величин, их единиц и способов измерения; правильно выполняет чертежи, схемы и графики; строит ответ по собственному плану, сопровождает рассказ новыми примерами, умеет применять знания в новой ситуации при выполнении практических заданий; может устанавливать связь между изучаемым и ранее других предметов.

Оценка 4 ставится в том случае, если ответ ученика удовлетворяет основным требованиям к ответу на оценку 5, но без использования собственного плана, новых примеров, без применения знаний в новой ситуации, без использования связей с ранее изученным материалом, усвоенным при изучении других предметов; если учащийся допустил одну ошибку или не более двух недочетов и может исправить их самостоятельно или с небольшой помощью учителя.

Оценка 3 ставится в том случае, если учащийся правильно понимает физическую сущность рассматриваемых явлений и закономерностей, но в ответе имеются отдельные пробелы в усвоении вопросов курса физики; не препятствует дальнейшему усвоению программного материала, умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении задач, требующих преобразования некоторых формул; допустил не более одной грубой и одной негрубой ошибки, не более двух-трех негрубых недочетов. Оценка 2 ставится в том случае, если учащийся не овладел основными знаниями в соответствии с требованиями и допустил больше ошибок и недочетов, чем необходимо для оценки 3. Оценка 1 ставится в том случае, если ученик не может ответить ни на один из поставленных вопросов.

2. Оценка письменных контрольных работ Оценка 5 ставится за работу, выполненную полностью без ошибок и недочетов.

Оценка 4 ставится за работу, выполненную полностью, но при наличии не более одной ошибки и одного недочета, не более трех недочетов.

Оценка 3 ставится за работу, выполненную на 1/2 всей работы правильно или при допущении не более одной грубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и трех недочетов, при наличии четырех-пяти недочетов.

Оценка 2 ставится за работу, в которой число ошибок и недочетов превысило норму для оценки 3 или правильно выполнено менее 1/2 работы.

Оценка 1 ставится за работу, невыполненную совсем или выполненную с грубыми ошибками в заданиях.

3. Оценка лабораторных работ Оценка 5 ставится в том случае, если учащийся выполнил работу в

полном объеме с соблюдением необходимой последовательности проведения опытов и измерений; самостоятельно и рационально монтирует необходимое оборудование; все опыты проводит в условиях и режимах, обеспечивающих получение правильных результатов и выводов; соблюдает требования правил безопасного труда; в отчете правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления, правильно выполняет анализ погрешностей. Оценка 4 ставится в том случае, если учащийся выполнил работу в соответствии с требованиями к оценке 5, но допустил два-три недочета, не более одной негрубой ошибки и одного недочета.

Оценка 3 ставится в том случае, если учащийся выполнил работу не полностью, но объем выполненной части таков, что позволяет получить правильные результаты и выводы, если в ходе проведения опыта и измерений были допущены ошибки.

Оценка 2 ставится в том случае, если учащийся выполнил работу не полностью и объем выполненной работы не позволяет сделать правильные выводы, вычисления; наблюдения проводились неправильно.

Оценка 1 ставится в том случае, если учащийся совсем не выполнил работу. Во всех случаях оценка снижается, если учащийся не соблюдал требований правил безопасного труда.

Перечень ошибок I.

Грубые ошибки

- 1. Незнание определений основных понятий, законов, правил, положений теории, формул, общепринятых символов, обозначения физических величин, единицу измерения.
- 2. Неумение выделять в ответе главное.
- 3. Неумение применять знания для решения задач и объяснения физических явлений; неправильно сформулированные вопросы, задания или неверные объяснения хода их решения, незнание приемов решения задач, аналогичных ранее решенным в классе; ошибки, показывающие неправильное понимание условия задачи или неправильное истолкование решения.
- 4. Неумение читать и строить графики и принципиальные схемы
- 5. Неумение подготовить к работе установку или лабораторное оборудование, провести опыт, необходимые расчеты или использовать полученные данные для выводов.
- 6. Небрежное отношение к лабораторному оборудованию и измерительным приборам.
- 7. Неумение определить показания измерительного прибора.
- 8. Нарушение требований правил безопасного труда при выполнении эксперимента.

2. Негрубые ошибки

- 1. Неточности формулировок, определений, законов, теорий, вызванных неполнотой ответа основных признаков определяемого понятия. Ошибки, вызванные несоблюдением условий проведения опыта или измерений.
- 2. Ошибки в условных обозначениях на принципиальных схемах, неточности чертежей, графиков, схем.
- 3. Пропуск или неточное написание наименований единиц физических величин.
- 4. Нерациональный выбор хода решения.

3. Недочеты

- 1. Нерациональные записи при вычислениях, нерациональные приемы вычислений, преобразований и решения задач.
- 2. Арифметические ошибки в вычислениях, если эти ошибки грубо не искажают реальность полученного результата.
- 3. Отдельные погрешности в формулировке вопроса или ответа.
- 4. Небрежное выполнение записей, чертежей, схем, графиков.

Основное содержание (68 ч)

Электродинамика (16 ч)

Магнитное поле тока. *Действие магнитного поля на движущийся заряд*. Явление электромагнитной индукции. Правило Ленца. Взаимосвязь электрического и магнитного полей. Самоиндукция. Индуктивность. Магнитные свойства вещества. Электромагнитное поле.

Лабораторные работы

Наблюдение действия магнитного поля на ток

Изучение явления электромагнитной индукции.

Колебания и волны (14 ч)

Механические колебания: свободные колебания. Математический маятник. Гармонические колебания. Амплитуда, период, частота и фаза колебаний. Вынужденные колебания. Резонанс. Автоколебания.

Электрические колебания: свободные колебания в колебательном контуре. Период свободных электрических колебаний. Вынужденные колебания. Переменный электрический ток. Активное сопротивление, емкость и индуктивность в цепи переменного тока. Резонанс в электрической цепи.

Производство, передача и потребление электрической энергии. Генерирование энергии. Трансформатор. Передача электрической энергии.

Механические волны. Продольные и поперечные волны. Длина волны. Скорость распространения волны. Звуковые волны. Интерференция волн. Принцип Гюйгенса. Дифракция волн.

Электромагнитные волны. Свойства электромагнитных волн. Принцип радиосвязи. Телевидение.

Лабораторная работа

Определение ускорения свободного падения при помощи маятника.

Оптика (14 ч)

Световые лучи. Закон преломления света. Полное внутреннее отражение. Призма. Формула тонкой линзы. Получение изображения с помощью линзы. Скорость света и методы ее измерения. Дисперсия света. Интерференция света. Когерентность. Дифракция света. Дифракционная решетка. Поперечность световых волн. Поляризация света. Шкала электромагнитных волн.

Лабораторные работы

Измерение показателя преломления стекла.

Определение оптической силы и фокусного расстояния собирающей линзы.

Измерение длины световой волны.

Наблюдение сплошного и линейчатого спектров.

Постулаты теории относительности. Принцип относительности Эйнштейна. Постоянство скорости света. Релятивистская динамика. Связь массы и энергии.

Квантовая физика (14 ч)

Световые кванты: тепловое излучение. Постоянная Планка. Фотоэффект. Уравнение Эйнштейна для фотоэффекта. Фотоны. Опыты Лебедева и Вавилова.

Атомная физика: строение атома. Опыты Резерфорда. Квантовые постулаты Бора. Модель атома водорода по Бору. Трудности теории Бора. Квантовая механика. Гипотеза Планка. Квантовая гипотеза де Бройля. Корпускулярно-волновой дуализм. Дифракция электронов. Лазеры.

Физика атомного ядра: методы регистрации элементарных частиц. Радиоактивные превращения. Закон радиоактивного распада и его статистический характер. Протоннонейтронная модель строения атомного ядра. Дефект масс и энергия связи нуклонов в ядре. Деление и синтез ядер. Ядерная энергетика. Физика элементарных частиц.

Астрономия (8 ч)

Солнечная система. Законы Кеплера. Система Земля-Луна. Физическая природа планет и малых тел Солнечной системы. Солнце. Основные характеристики звезд. Диаграмма Герцшпрунга — Рессела. Эволюция звезд: рождение, жизнь и смерть звезд. Млечный Путь — наша Галактика. Галактики. Строение и эволюция Вселенной. Единая физическая картина мира.

- Требования к уровню подготовки выпускников
- В результате изучения физики на базовом уровне ученик должен
- Знать/понимать
- Смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, галактика, Вселенная;
- Смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;
- Смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;
- Вклад российских и зарубежных ученых, оказавших значительное влияние на развитие физики;
- Уметь
- Описывать и объяснять физические явления и свойства тел: движение небесных тел и ИСЗ, свойства газов, жидкостей и твердых тел, электромагнитная индукция, распространение электромагнитных волн, волновые свойства света, излучение и поглощение света атомом, фотоэффект;
- Отличать научных гипотезы ОТ теорий, делать выводы на основе экспериментальных данных, приводить примеры, показывающие, что наблюдения и эксперименты являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов, физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще не известные явления;
- Приводить примеры практического использования физических знаний: законов механики, термодинамики и электродинамики в энергетике, различных видов электромагнитных излучений для развития радио- и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров;
- Воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях;
- Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- Обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи;
- Оценки влияния на организм человека и другие организмы загрязнения окружающей среды;

• Рационального природопользования и защиты окружающей среды.

Тематическое планирование по физике 11 класс

№	Раздел	Тема урока	Кол-во часов
1	Основы		
	электродинамики	Магнитное поле. Индукция магнитного поля	
	(164)	·	1
2		Сила Ампера	1
3		Решение задач	1
4		Лабораторная работа №1 Наблюдение действия	
		магнитного поля на ток»	1
5		Действие магнитного поля на движущуюся	
		заряженную частицу. Сила Лоренца	1
6		Магнитные свойства вещества	1
7		Решение задач	1
8		Электромагнитная индукция. Магнитный поток	1
9		Правило Ленца. Закон электромагнитной	
		индукции	1
10		Лабораторная работа №2 «Изучение явления	
		электромагнитной индукции»	1
11		Закон электромагнитной индукции. Решение	
		задач	1
12		ЭДС индукции в движущихся проводниках.	1
13		Явление самоиндукции. Индуктивность. Энергия	
10		магнитного поля тока	1
14		Электромагнитное поле.	1
15		Решение задач	1
16		Контрольная работа №1 "Основы	1
10		термодинамики"	1
17	Колебания и		1
1 /	волны (14ч)	Свободные колебания	1
18	Boshibi (1+1)	Математический маятник	1
19		Лабораторная работа № 3 «Определение	1
1)		ускорения свободного падения при помощи	
		маятника»	1
20		Гармонические колебания	1
21		Затухающие и вынужденные колебания. Резонанс	1
22		Решение задач	1
23		Свободные электромагнитные колебания	1
24		Гармонические электромагнитные колебания в	1
∠ +		колебательном контуре. Формула Томсона.	
		Переменный электрический ток	1
25		Решение задач	1
26		Генератор переменного тока. Трансформатор.	1
20		Производство, передача и потребление	
		электрической энергии.	1
27		Волновые явления. Характеристики волны.	1
<i>41</i>			
		Звуковые волны. Интерференция, дифракция и	1
28		поляризация механических волн.	1
∠ŏ		Электромагнитное поле. Электромагнитная волна.	1
		Свойства электромагнитных волн.	1

29		Изобраточно вонно А.С. Попорым Принични	l i
29		Изобретение радио А.С. Поповым. Принципы	
		радиосвязи. Понятие о телевидении. Развитие	1
20		средств связи	1
30		Контрольная работа №2 «Колебания и волны»	1
31		Скорость света. Принцип Гюйгенса. Закон	
	Оптика (14ч)	отражения света.	1
32		Законы преломления света. Полное отражение	
		света	1
33		Лабораторная работа №4 «Измерение показателя	
		преломления стекла»	1
34		Линза. Построение изображений в линзе.	
		Формула тонкой линзы. Увеличение линзы	1
35		Лабораторная работа №5 «Определение	
		оптической силы и фокусного расстояния	
		собирающей линзы»	1
36		Дисперсия света. Интерференция света.	1
37		Дифракция света. Дифракционная решетка.	1
38		Поперечность световых волн. Поляризация света.	-
30		Лабораторная работа №6 «Измерение длины	
		световой волны»	1
39		Лабораторная работа №7 "Оценка	1
39			1
40		информационной ёмкости компакт-диска (СD)"	1
40		Виды излучений. Источники света. Спектры и	
		спектральный анализ. Лабораторная работа № 8	
		«Наблюдение сплошного и линейчатого	1
41		спектров»	1
41		Контрольная работа №3 "Оптика"	1
42		Постулаты теории относительности. Основные	1
10		следствия из постулатов теории относительности.	1
43		Элементы релятивистской динамики. Решение	4
		задач	1
44		Решение задач	1
45	Квантовая физика	Фотоэффект. Применение фотоэффекта. Фотоны.	
	(14ч)	Корпускулярно-волновой дуализм	1
46		Давление света. Химическое действие света.	
		Решение задач	1
47		Строение атома. Опыты Резерфорда. Квантовые	
		постулаты Бора. Модель атома водорода по Бору	1
48		Решение задач	1
49		Строение атомного ядра. Ядерные силы. Энергия	
		связи атомных ядер.	1
50		Радиоактивность.	1
51		Закон радиоактивного распада. Период	
		полураспада.	1
52		Решение задач	1
53		Методы наблюдения и регистрации элементарных	-
		частиц.	1
54		Искусственная радиоактивность. Ядерные	-
J +		реакции	1
55		 	1
33		Деление ядер урана. Цепная реакция деления. Ядерный реактор	1
		идерпын реактор	1

56		Термоядерные реакции. Применение ядерной	
		энергии. Биологическое действие радиоактивных	
		излучений	1
57		Контрольная работа №4 "Квантовая физика"	1
58		Три этапа в развитии физики элементарных	
		частиц. Открытие позитрона. Античастицы	1
59	Астрономия (8ч)	Солнечная система. Законы Кеплера	1
60		Система Земля - Луна. Физическая природа	
		планет и малых тел Солнечной системы.	1
61		Солнце	1
62		Основные характеристики звезд. Диаграмма	
		Герцшпрунга - Рессела	1
63		Эволюция звёзд: рождение, жизнь и смерть звёзд	1
64		Млечный Путь - наша Галактика. Галактики	1
65		Строение и эволюция Вселенной	1
66		Единая физическая картина мира	1
67	Повторение (2ч)	Итоговая тестовая контрольная работа	1
68		Обобщение, закрепление	1

Литература

- 1.Мякишев Г.Я. Физика 11 класс: учебник для общеобразовательных учреждений: базовый и профильный уровни / Г.Я. Мякишев, Б.Б. Буховцев, В.М. Чаругин; под ред В.И. Николаева, Н.А. Парфентьевой, 5 изд- М.: Просвещение, 2018
- 2.Шевцов В.П. Тематический контроль по физике в средней школе для 7-11 кл.: зачеты, тесты и контрольные работы с ответами./В.П. Шевцов. -Р
- 3. Громцева О.И. Контрольные и самостоятельные работы по физике. 11 кл.